A family of monotone quantum relative entropies

نویسندگان

  • Mathieu Lewin
  • Julien Sabin
  • MATHIEU LEWIN
چکیده

We study here the elementary properties of the relative entropyH(A,B) = Tr[φ(A)−φ(B)−φ(B)(A−B)] for φ a convex function and A,B bounded self-adjoint operators. In particular, we prove that this relative entropy is monotone if and only if φ is operator monotone. We use this to appropriately define H(A,B) in infinite dimension. In this paper we introduce a relative entropy H(A,B) of two bounded operators A and B on a Hilbert space and discuss its elementary properties. Our relative entropy H(A,B) could be useful in many practical situations including quantum information theory. In a separate work [9], we will use it to discuss the orbital stability of certain stationary states for the Hartree equation of an interacting gas containing infinitely many quantum particles. For simplicity we work on the interval I = [0, 1] but all our results can be generalized to any finite interval. We consider two N×N hermitian matrices A,B whose spectrum is a subset of I. For φ ∈ C([0, 1],R) ∩C1((0, 1),R) a convex function, we introduce the following relative entropy H(A,B) = Tr ( φ(A) − φ(B)− φ(B)(A−B) ) . (1) We remind the reader of Klein’s lemma. Lemma 1 (Klein [12, Prop. 3.16], [14, Thm 2.5.2]). If fk, gk : [a, b] → R are K measurable functions such that ∑K k=1 fk(x)gk(y) > 0 for all x, y ∈ [a, b], then we have ∑K k=1Tr (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

α-z-Rényi relative entropies

We consider a two-parameter family of Rényi relative entropies Dα,z(ρ||σ) that are quantum generalisations of the classical Rényi divergence Dα(p||q). This family includes many known relative entropies (or divergences) such as the quantum relative entropy, the recently defined quantum Rényi divergences, as well as the quantum Rényi relative entropies. All its members satisfy the quantum general...

متن کامل

The General Form of γ-Family of Quantum Relative Entropies

We use the Falcone–Takesaki non-commutative flow of weights and the resulting theory of non-commutative Lp spaces in order to define the family of relative entropy functionals that naturally generalise the quantum relative entropies of Jenčová– Ojima and the classical relative entropies of Zhu–Rohwer, and belong to an intersection of families of Petz relative entropies with Bregman relative ent...

متن کامل

A Pedagogical Intrinsic Approach to Relative Entropies as Potential Functions of Quantum Metrics: the q-z Family

q-z-relative entropies provide a huge two parameters family of relative entropies which include almost all known relative entropies for suitable values of the parameters. In this paper we use these relative entropies as generalized potential functions to generate metrics on the space of quantum states. We further investigate possible ranges for the parameters q and z which allow to recover know...

متن کامل

Relative entropies in conformal field theory.

Relative entropy is a measure of distinguishability for quantum states, and it plays a central role in quantum information theory. The family of Renyi entropies generalizes to Renyi relative entropies that include, as special cases, most entropy measures used in quantum information theory. We construct a Euclidean path-integral approach to Renyi relative entropies in conformal field theory, the...

متن کامل

Rényi squashed entanglement, discord, and relative entropy differences

The squashed entanglement quantifies the amount of entanglement in a bipartite quantum state, and it satisfies all of the axioms desired for an entanglement measure. The quantum discord is a measure of quantum correlations that are different from those due to entanglement. What these two measures have in common is that they are both based upon the conditional quantum mutual information. In [Ber...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013